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In this paper, we report the first metal-catalyzed, highly
selective, and efficient mono-oxidation of bidentate phosphines
to bis-phosphine monoxides (BPMOs) of the general formula R2P-
(O)-Y-PR2, where Y is a divalent bridging group. A number of
BPMOs have proven to be valuable soft/hard ligands for
inorganic/organometallic synthesis1 and especially catalysis with
transition metals.2-5 The use of BPMOs for the hydroformylation2

and hydroxycarbonylation5 of olefins resulted in one of the highest
linear-to-branched product ratios ever observed for such reactions.
The temperature (200°C) and pressure (500 psi) normally required
to run the Monsanto process (MeOH+ CO to AcOH)6 can be
brought down to as low as 80°C and 50 psi, with no loss in
catalytic turnover frequency, by simply activating the conventional
Rh catalyst with Ph2P(O)(CH2)2PPh2.3a,dDespite its great potential
and anticipated diversity, the coordination and catalytic chemistry
of BPMOs still remains in its infancy due to the lack of a
convenient, general method to synthesize these ligands.7

A selective mono-oxidation reaction of readily available
bidentate phosphines would apparently be the simplest and most

attractive strategy for the preparation of BPMOs. However, the
direct oxidation of Ph2P(CH2)nPPh2 with conventional oxidants
(e.g., O2, H2O2, Br2/H2O) is nonselective, always leading to
mixtures of the unreacted diphosphine, its monoxide, and its
dioxide.9-11 Tedious column separations of such mixtures and
poor isolated yields are inevitable when preparing BPMOs via
the conventional diphosphine oxidations.10 In sharp contrast with
this, our anaerobic Pd-catalyzed biphasic oxidation with 1,2-
dibromoethane/alkali is remarkably selective, giving rise to the
desired mono-oxidized product (eq 1).

Reaction 1 occurs under mild conditions, affording various
BPMOs in up to 90% isolated yield (Table 1). Our research was
focused on aromatic substrates containing PPh2 moieties, which
cannot be mono-oxidized selectively, using the “protonation
followed by oxidation” technique developed by Ma¨ding and
Scheller.11 All reactions were run on a 0.1-100 g scale, with the
substrate-to-catalyst ratio being in the range of 1000-100.12
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Ph2P-Y-PPh2 + BrCH2CH2Br +

2NaOH98
Pd(OAc)2

water/1,2-C2H4Cl2 or CH2Cl2
Ph2P(O)-Y-PPh2 +

CH2dCH2 + 2NaBr+ H2O (1)
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Although Pd(OAc)2 is the most convenient catalyst to use, a wide
variety of Pd and Pt compounds, e.g., PdCl2, Na2PdCl4, K2PtCl4,
phosphine complexes, and so forth, may be used as well. In
general, Pd catalysts are more efficient than their Pt counterparts.13

Importantly, to obtain high yields of BPMOs, reaction conditions
should be thoroughly optimized for each particular diphosphine
substrate to be oxidized. For instance, the oxidation of dppp to
dpppO occurs with the highest yield when conducted at 80°C,
whereas room temperature and longer reaction times benefit the
clean formation of dppbO from dppb (Table 1). In some cases
(dppm, dppfc), the mono-oxidation is much more efficient when
run in the presence of small quantities of iodide anion. At this
point, the effect of the I- is not entirely understood.14

Catalytic process 1 was realized by means of an elaborate
design stemming from fundamentals of organic and modern
organometallic chemistry, rather than from screening techniques.
The mechanism of the catalytic oxidation involves the hard base-
promoted selective intramolecular redox process Pd(II)/P(III)f
Pd(0)/P(V),15 followed by reoxidation of the resulting Pd(0)
species back to the catalytically active Pd(II). The latter forms
via the oxidative addition of BrCH2CH2Br to give a bromoethyl
complex, [LPd(Br)(CH2CH2Br)], which then loses ethylene as a
result of â-halogen elimination.16 Detailed mechanistic studies
of reaction 1 will be reported separately.

Due to the presence of both the soft (P) and hard (O)
nucleophilic centers within one molecule, hemilabile17 BPMO

ligands can (i) stabilize the transition metals in both low and high
oxidation states and (ii) form labile chelates which easily generate
highly reactive, coordinatively unsaturated species, thus providing
the metal complex with low activation energy paths to isomeri-
sation, oxidative addition, migratory insertion, reductive elimina-
tion reactions, and so forth. It is hoped that due to the simple
and efficient catalytic route to BPMOs described herein, these
valuable ligands will soon enjoy many new applications in
synthesis and catalysis.
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Table 1. Pd-catalyzed Mono-Oxidation of Bidentate Phosphines

a A: 1,2-dichloroethane, 10-20% NaOH, 1.5-2 equiv C2H4Br2, reflux. B: in the presence of NaI (8-10 mol equiv/Pd). C: CH2Cl2, 20%
NaOH, 2 equiv C2H4Br2, room temperature. D: CH2Cl2, 20% NaOH, 3 equiv C2H4Br2, reflux. E: CH2Cl2, 4.5% NaOH, 4 equiv C2H4Br2, room
temperature for 48 h, then under reflux with 8% NaOH for 1 more day.
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